7

Development and Application of Logical Actors Mathematical Apparatus for Logic Programming of Web Agents

Alexei A. Morozov

Institute of Radio Engineering and Electronics RAS
Mokhovaya 11, Moscow, Russia, 125009
morozov@mail.cplire.ru
http://www.cplire.ru/Lab144

Web agents are programs that automate retrieval, recognition, extraction, and analysis of information on the Internet oriented toward the needs of an individual user (or group of users).

[image: image1.png]St Space
Dynamic Space
Legend

IRERAS

Fig.1. An example of a 3D (VRML) report created by a Web agent
(available at http://www.cplire.ru/Lab144/space/prolog.html).

What is the fundamental problem to be solved in our project?

We are interested in mathematical strictness of logic programs that operate in dynamic outer world. Web agents are only a particular case of such programs. Other cases are the following: visual user interface, virtual reality, control systems, etc.

Agents differ from the widely used Internet retrieval systems in the following:

(1) They can autonomously operate during long periods of time (days, weeks, or more).

(2) As any other program, once created, an agent can be used many times, whereas a query to a search engine invokes a single information retrieval.

One of the most interesting and perspective approaches to programming Web agents is logic programming of agents. The urgency of this approach is determined, in particular, by the fact that the ideology and principles of logic programming correspond to the problems of retrieval, recognition, and analysis of ill-structured and also hypertext information. However, the main advantage of logic programming is the fact that, in the framework of this approach, there exist criteria for evaluating the mathematical strictness of information processing methods, namely, the model-theoretic semantics of programs and also the notions of soundness and completeness of logic programs.

However, up to now, no mathematical apparatus which could provide sound and complete work of logic programs (agents) in a dynamic external environment (i.e., in conditions of permanent change and augmentation of information in the Internet) was created. To solve this problem, we have developed a mathematical apparatus based on the principle of repeated proving of subgoals.
1. The Idea of Mathematical Apparatus:
Repeated Proving of Logical Actors

Our mathematical apparatus for logic programming of Internet agents includes:

(1) A logic language for describing the agents that operate in a dynamic environment;

(2) A declarative (model-theoretic) semantics of agents;

(3) Control strategies for executing logic programs (Web agents) that are sound and (under some conditions) complete with respect to the model-theoretic semantics of these agents.

Within the framework of our model of intelligent agents, an Internet agent (or a group of interacting Internet agents) is a logic program controlled by a special strategy which implements the so-called repeated proving of subgoals.

The idea of repeated proving consists in dividing the program into separate subgoals (called logical actors) that have the following properties (see Fig. 2):

(1) Common variables are the single channel of data exchange between the actors.

(2) The proving of separate actors can be fulfilled independently in arbitrary order.

(3) One can cancel the results of proving of any actor while keeping all other subgoals of the program.

[image: image2.wmf]W1

W2

W4

W3

A1

A2

V1

V3

A3

A4

V4

A5

V6

V5

V7

A6

A7

V2

A1, (, An
—
Logical actors

V1, (, Vm
—
Common variables

W1, (, Wk
—
Instances of classes (worlds)

Fig.2. The idea of logical actors.

After canceling the results of the proving of the actor, its proving can be repeated. Thus, one can implement a modification of reasoning. The logical inference can be partially modified. The results and the consecution of reasoning itself can be partly modified in the process and after the logic inference. This makes it possible to eliminate the contradictions between the results of the logical reasoning and new information.

We have developed also object-oriented means (classes, inheritance) for structuring the search space.

2. Comparison with Nonmonotonic Approach

Our technique is an alternative to the nonmonotonic approach. The idea of this technique can be illustrated by canonical example about the ostrich Tweety.

We write the canonical example in two different ways. The first method is based on the use of the logic program with the not statement, which is a certain approximated implementation of nonmonotonic logic.

?– can_fly (“Tweety”, Answer).

can_fly (Name, “yes”) :–

bird (Name),

not ostrich (Name).

can_fly (Name, “not”) :–

bird (Name),

ostrich (Name).

bird (“Tweety”).

ostrich (“Tweety”).

If the database does not contain the fact formulated as ostrich(“Tweety”), then the proof of the assertion not ostrich(“Tweety”) will succeed and Prolog will read out Answer = “yes”, meaning that Tweety can fly. However, when the fact ostrich(“Tweety”) is appended, this negation becomes not derivable, and Prolog will read out that Tweety cannot fly.

The second method is based on the use of the technique of logic actors. Logic actors are subgoals of the logic program that can be proven repeatedly without logic program backtracking. In what follows, we denote logic actors by using the prefix @.

?– can_fly (“Tweety”, Order, Answer).

can_fly (Name, Order, Answer) :–

bird (Name),

@ suitable_order (Order, Answer).

suitable_order (“conventional”, “yes”).

suitable_order (“ostriches”, “not”).

bird (“Tweety”).

This works as follows. In the course of logic program run, the actor @ suitable_order is proven as a usual subgoal; Prolog will output the following result: Answer = “yes”, and, in addition, it will assign the value to the variable Order, i.e., Order = “conventional”. Subsequently, if it turns out that Tweety is an ostrich, this information must be communicated to the program via the following destructive assignment operation:

Order := “ostriches” .
The soundness of inference is certainly violated by this destructive assignment. However, once the value of the variable Order has been changed, the logic actor mechanism will automatically restore the soundness of the inference by the repeated proving of a separate subgoal, namely, the logic actor @ suitable_order. This time, the fact suitable_order (“ostriches”, “no”) will be selected, and the program will output the new result:

Answer = “no” .
The second formalization method has the following merits:

(1) The new data arrive in the form of terms (data items) rather than logic statements.

(2) If the source data have been changed, it is only necessary to prove once again certain program subgoals.

(3) We stay in the framework of classical monotonic logic with all its descriptive and deductive abilities being preserved.

Logic Object-Oriented Model of Asynchronous Concurrent Computations

The most complicated and interesting problem to be solved for implementing the idea of logical actors and repeated proving is the development of control strategies supporting repeated proving which are sound and (if possible) complete. We have developed several control strategies supporting repeated proving.

One of the first control strategies was created for the execution of sequential logic programs with logical actors. Further experiments on visual logic programming of intelligent agents have shown that it is expedient to develop more complex concurrent control strategies as well. To the present day, we have expanded our computing model by introducing concurrent processes.

[image: image3.png]Trigger

massage
nput |-
Keywords |
1 st ot
Unls
ot U ot
keyuards of
Merge | U5“
Lists
4 st ot
Fiter | U8
st ot List
Unls 5
Browse
List

Testing
process

Fig.3. An example of concurrent logic program using flow messages, direct messages, and so-called residents (R).

Each concurrent process is a system of logical actors. The processes interact by using asynchronous messages of two kinds (see example on Fig. 3):

(1) The so-called direct messages (intuitively, they correspond to asynchronous call of the predicates in one concurrent process from another one);

(2) Flow messages (corresponding to data transmission through the common variables of processes).

The composition of messages of these two kinds helps us to describe the complex behavior of agents without means of synchronization of concurrent processes.

The main advantage of our expanded computing model is that it provides a declarative (classical model-theoretic) semantics of concurrent logic programs. The concurrent logic program is always sound w.r.t. its declarative semantics. The program is not only sound but also complete w.r.t. its declarative semantics if some strict limitations on the properties of the system of processes are fulfilled.

(1) Each separate process (as a separate logic program that computes some data) must be complete with respect to its declarative semantics. In particular, the absence of process cycling should be guaranteed.

(2) The procedures that compute data transmitted from one process to another must be deterministic in order that the completeness of logic inference is not lost due to the impossibility of backtracking from the receiving process to the transmitting one.

(3) The information transmission between the processes should be strictly one-directional. Only flow messages should be used (this condition can be, in principle, softened). The system of interacting processes should have no feedback.

The systems of interacting processes complying with these strict conditions are of great practical importance, because they describe the flow processing of data received by a system of intelligent agents from outside.

The soundness and completeness properties ensure the exhaustive search, i.e., guarantee all solutions that fulfill the given logical conditions.

Development of the Actor Prolog language

We have created an object-oriented logic language Actor Prolog on the basis of our mathematical apparatus (the definition of the language, including all new means, is available at our Website http://www.cplire.ru/Lab144). We have also introduced some special means that support programming of Web agents in recent versions of the language:

(1) There are predefined classes implementing HTTP and FTP protocols.

(2) There are means for visual programming based on translation of Structured Analysis and Design Technique (SADT) diagrams into Actor Prolog.

(3) There are syntactical features supporting component-oriented programming.

Now, we have a working version of a system of logic programming of Internet agents on the basis of the developed mathematical apparatus and Actor Prolog.

[image: image4.png]Actor Prolog -

Fig.4. Control panel of Actor Prolog player.

You are welcome to take part in beta testing of Actor Prolog. Please contact Dr. Alexei A. Morozov (morozov@mail.cplire.ru).

Speculative Concurrent Computations

The principle of interaction of concurrent processes developed by the author and his colleagues is a generalization of the method of speculative computations.

The idea of speculative computations implies that certain branches of the algorithm can be implemented in advance, prior to the moment when it becomes clear whether the obtained data are needed for further program execution. The use of this idea and the mathematical apparatus of logic programming makes it possible not to delay concurrent processes for their synchronization.

Instead of delaying the processes, we use a modification of logic inference; as a result, the general scheme of interaction of concurrent processes can be represented as follows.

Each process performs computations with data available at the present moment. If some data are not yet received, the process performs computations with incomplete data. The developed strategy of execution of logic programs is sound with respect to their declarative semantics; therefore, any results obtained during computations are correct with respect to the declarative semantics of the program.

Computations with incomplete input data can be regarded as a certain form of computing by default. Subsequently, when new or modified input data arrive in the process, the conducted computations are modified and the earlier obtained results are refined.

Modification of logic inference in our computation model is based on the principle of the repeated proving of subgoals.

The Actor Prolog Project

Theoretical results:

1. A logical interpretation of object-oriented programming (OOP).

2. Repeat proving of logical actors providing soundness in dynamic environment.

3. A new concurrent computing model.

Programming technology issues:

1. Visual programming based on Structured Analysis and Design Technique (SADT).

2. Component-oriented programming.

Implementation issues:

1. All the Actor Prolog agents are persistent.

2. Predefined classes support FTP and HTTP now.

3. You are welcome to participate in beta testing of Actor Prolog (http://www.cplire.ru/Lab144).

Visual Programming of Internet Agents

We have developed experimental tools for visual logic programming of Web agents. The use of SADT-diagrams forms the basis. SADT-diagrams are a variety of functional diagrams and are widely applied for the analysis and design of complex systems.

The system of visual programming implements the following scheme for intelligent agent design.

(1) SADT tools are used to develop the graphic description of an intelligent agent. SADT-description is a hierarchy of blocks that receive and pass data flows (see example on Fig. 5).

(2) Each elementary block of a SADT-model is put into correspondence with a logic description in the form of a certain class of Actor Prolog. The source text in Actor Prolog can be written by a programmer or taken from the library of reusable modules.

(3) The graphic description of the agent is automatically translated into the text in Actor Prolog. The syntactic means of Actor Prolog make it possible to implement the block–hierarchical structure and links between blocks of a diagram in the form of communicating processes.

(4) Assembling the automatically created text and descriptions of elementary blocks, we obtain a ready-to-use program in Actor Prolog.

[image: image5.png]otes: 12345878010 W ssceon a0

Flow messages

Direct messages

WooE: TiTLE: SADT sxample 3. Flow and direct messages. NUMEER:

Fig.5. An example of SADT diagram describing data processing.

Experimentation with visual programming has shown that SADT-diagrams can be conveniently used not only as a visual programming language but simply as a user graphic interface. At present, visual programming system automatically creates visual interface of a logic program on the basis of source SADT-diagram (see examples on the figures 6, 7).

Individual blocks of an SADT-based user interface are implemented by using concurrent processes. As a rule, each elementary block of a diagram has its own dialog box that opens by the click of a mouse.

[image: image6.png][Actor Prolog [D:\MOR0ZO'
Ele Progan Window Help

B [
V' Do not exceed page number |30

Cantra

OK.

Message "Seach

#A |

Maximal Length of File}

RLLa r
50000 A x
ok | | FEEEE .J

e

URL List

Fig.6. An example of visual user interface based on SADT.
The color of the block changes automatically depending on the state of the corresponding process. A user can interact with the blocks in any order.

The tools for visual programming based on the object-oriented logic approach substantially simplify the creation of Web agents, as well as their subsequent support and modification.

Persistent Agents

All programs written in Actor Prolog are long-lived (persistent). A user can at any moment save the state of the operating program into a file and then restart it from that point. Actor Prolog saves states of all objects of a program, including the contents of text windows and current positions of open files. This feature is of great importance for Web agents, because they operate during long periods of time. So, they can restore their states in cases of hardware or software malfunctions in the computer system.

[image: image7.png][_[OIx]

[Actor Prolog [D:\MOROZOVZ\DEMOAEXE-OI
File Program Window Help

(Quite suited methods of oil-production
for given hydrocarbon field:
Carbonated waterflooding

Tmmiscible nifrogen

Miscible CO2

E

Fig.7. An example of visual expert system written in Actor Prolog
(see details at http://www.cplire.ru/Lab144/start/e_oil.html).

Conclusions

The mathematical apparatus of logic programming of intelligent agents performing the search and recognition of information in a dynamic Internet environment is developed. The developed mathematical apparatus is based on the principle of the repetitive proving of subgoals, which makes it possible to modify the logic reasoning during the execution of logic programs.

Based on the developed apparatus of modifiable reasoning, we have created the Actor Prolog, concurrent object-oriented logic language, which ensures the correctness of Web agents functioning under conditions of permanent change and updating of information.

The developed tools make it possible to create agents for gathering and analyzing information on the Internet. The developed approach supports visual and component-oriented programming of Internet agents.

References

1. Actor Prolog Website http://www.cplire.ru/Lab144 .

2. Morozov A.A. Actor Prolog: an Object-Oriented Language with the Classical Declarative Semantics // Proc. of IDL'99 workshop. – Paris, France, September 27-28, 1999. (http://www.cplire.ru/Lab144/paris.pdf)

3. Morozov A.A., Obukhov Yu.V. On the Problem of Logical Recognition in the Dynamic Internet Environment // Pattern Recognition and Image Analysis. – 2001. – Vol.11. – No.2. – pp.454-457. (http://www.cplire.ru/Lab144/pria5.pdf)

4. Morozov A.A., Obukhov Yu.V. An Approach to Logic Programming of Intelligent Agents for Searching and Recognizing Information on the Internet // Pattern Recognition and Image Analysis. – 2001. – Vol.11. – No.3. – pp.570-582. (http://www.cplire.ru/Lab144/pria570m.pdf)

5. Morozov A.A. Getting Started in Actor Prolog. – IRE RAS: 2002. – http://www.cplire.ru/Lab144/start/ .

6. Morozov A.A. On Semantic Link Between Logic, Object-Oriented, Functional, and Constraint Programming // Proc. of MultiCPL'02 workshop. – Ithaca, USA, September 8, 2002. – pp.43-57. (http://www.cplire.ru/Lab144/multicpl.pdf)

7. Morozov A.A., Obukhov Yu.V. Development of the Methods and Tools for Mathematically Correct Logic Programming of Internet Agents // Pattern Recognition and Image Analysis. – 2003. – Vol.13. – No.2. – pp.225-227. (http://www.cplire.ru/Lab144/pria225.pdf)

8. Morozov A.A. Logic Object-Oriented Model of Asynchronous Concurrent Computations// Pattern Recognition and Image Analysis. – 2003. – Vol.13. – No.4. – pp.640-649. (http://www.cplire.ru/Lab144/pria640.pdf)

See examples of Actor Prolog programming in

Morozov A.A. Getting Started in Actor Prolog. –
IRE RAS: 2002. – http://www.cplire.ru/Lab144/start/ .
We look for International co-operators. The possible directions of joined efforts could be the following:

1. Participation in the INTAS and EC projects.

2. International cooperation in development of new generation logic programming means. We work about 15 years on the following problems:

2.1. Logic interpretation of object-oriented approach. The main idea is the following: OOP should be not only a supported feature, but a basis of any modern programming language.

2.2. The destructive assignment and dynamic environment semantics problems. These problems have no generally accepted solutions now: from the model-theoretic semantics standpoint, current standard Prolog is a prover, rather than a programming language. We have an idea how to improve the situation.

2.3. Development of logic languages syntax design. From our point of view, current standard Prolog has a design of interpretation (script) language, rather than of a modern compilable language. So, Prolog should be totally revised.

3. Development and implementation of Actor Prolog language. We want to create an open implementation of the language.

4. Research, development, and implementation of compilers from Actor Prolog into Java, .NET, C++.

5. Any other ideas and suggestions are welcome!

PAGE
7

_1131903835.doc

A2

W4

A7

A6

V7

V5

V6

A5

W3

V4

V2

A4

A3

V3

W2

V1

W1

A1

